setup examples and clean codebase

This commit is contained in:
PedroEdiaz
2024-12-03 22:18:48 -06:00
parent f8eb20c0cf
commit f514fc7ffe
9 changed files with 516 additions and 438 deletions

View File

@@ -1,40 +0,0 @@
#undef A
#undef B
#undef C
#undef D
#undef E
#undef F
#undef G
#undef H
#define A -2.0,-0.05,-0.05,
#define B -2.0,-0.05, 0.05,
#define C -2.0, 0.05,-0.05,
#define D -2.0, 0.05, 0.05,
#define E 2.0,-0.05,-0.05,
#define F 2.0,-0.05, 0.05,
#define G 2.0, 0.05,-0.05,
#define H 2.0, 0.05, 0.05,
float d_axis[] =
{
3*3*2*6,
A C E
G E C
E G F
H F G
F H B
D B H
B D A
C A D
C D G
H G D
E B A
B E F
};

View File

@@ -2,29 +2,43 @@
#include <stdio.h>
int create_surface_klein( unsigned char * path, struct surface * surface )
/*
KLEIN Format:
5 bytes with KLEIN
1 byte empty for scaling
1 byte with the dimention of the surface
8 bytes interprated as a long with the number of vertex
n bytes with the vertex data of the surface
n bytes with the normal data of the surface
where n is the size of the vertex and normal data that could be
calculated as the dimention of the surface time the number of vertes
time the size of a 16 bytes float.
*/
int create_surface_klein(unsigned char *path, struct surface *surface)
{
unsigned long size;
char buffer[5];
FILE * file = fopen(path, "rb" );
if( !file )
FILE *file = fopen(path, "rb");
if (!file)
return 1;
fread(buffer, 1, 5, file );
fread(buffer, 1, 5, file);
if( strncmp(buffer, "KLEIN", 5 ) )
if (strncmp(buffer, "KLEIN", 5))
return 1;
fread(buffer, 1, 1, file );
fread(buffer, 1, 1, file);
fread(&surface->dim, 1, 1, file);
fread(&surface->vertex, 8, 1, file);
size = surface->dim * surface->vertex;
surface->data=malloc(16*size );
fread(surface->data, 16,size, file);
surface->data = malloc(16 * size);
fread(surface->data, 16, size, file);
surface->norm=malloc(16*size );
surface->norm = malloc(16 * size);
fread(surface->norm, 16, size, file);
return 0;
}

View File

@@ -1,388 +0,0 @@
#include <complex.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#define TEST
#define CGLM_ALL_UNALIGNED
#include <cglm/vec3.h>
#include <cglm/vec4.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef CMPLX
#define CMPLX(a, b) (a + I * b)
#endif
#ifdef TEST
#include <assert.h>
#endif
#include <stdio.h>
typedef void (*function_t)(float *, int *, unsigned char *);
struct parm
{
unsigned char *grid;
unsigned char m, n;
function_t f;
};
// Función para escribir el archivo .klein
int write_klein_file(const char *filename, unsigned char dim, unsigned long vertex, float *vertices, float *normals)
{
FILE *file = fopen(filename, "wb");
if (!file)
{
perror("Error al abrir el archivo");
exit(EXIT_FAILURE);
}
// Escribir encabezado
fwrite("KLEIN", 1, 5, file); // Los primeros 5 bytes son "KLEIN"
fputc(0, file); // Byte vacío
fwrite(&dim, 1, 1, file); // Dimensión de la superficie
fwrite(&vertex, sizeof(unsigned long), 1, file); // Número de vértices (8 bytes)
fwrite(vertices, sizeof(float), vertex * dim, file);
fwrite(normals, sizeof(float), vertex * dim, file);
printf("Archivo %s escrito correctamente.\n", filename);
fclose(file);
return 0;
}
int factorial(int n)
{
if (n == 1)
return 1;
return n * factorial(n - 1);
}
int faces(int n)
{
if (n == 2)
return 1;
return (1 << (n - 3)) * factorial(n) / factorial(n - 2);
}
void riemman(float *d_surface, int *coords, unsigned char *grid)
{
complex double eq;
float u = 2 * ((float)coords[0] / grid[0]) - 1;
float v = 2 * ((float)coords[1] / grid[1]) - 1;
eq = csqrt(CMPLX(u, v));
d_surface[0] = u;
d_surface[1] = v;
d_surface[2] = creal(eq);
d_surface[3] = cimag(eq);
}
void cube(float *d_surface, int *coord, unsigned char *grid)
{
int i;
for (i = 0; i < 4; i++)
d_surface[i] = (2 * (float)coord[i] / grid[i]) - 1;
if (4 == 2)
d_surface[2] = 0;
}
void mobius(float *d_surface, int *coord, unsigned char *grid)
{
const float width = 0.5;
float u = (2 * M_PI) * ((float)coord[0] / grid[0]);
float v = (2 * width) * ((float)coord[1] / grid[1]) - width;
d_surface[0] = cos(u) + v * cos(u / 2) * cos(u);
d_surface[1] = sin(u) + v * cos(u / 2) * sin(u);
d_surface[2] = v * sin(u / 2);
}
void torus(float *d_surface, int *coord, unsigned char *grid)
{
float u = (2 * M_PI) * ((float)coord[0] / grid[0]);
float v = (2 * M_PI) * ((float)coord[1] / grid[1]);
d_surface[0] = (1 + 0.5 * cos(v)) * cos(u);
d_surface[1] = (1 + 0.5 * cos(v)) * sin(u);
d_surface[2] = 0.5 * sin(v);
}
void klein(float *d_surface, int *coord, unsigned char *grid)
{
float u = (2 * M_PI) * ((float)coord[0] / grid[0]);
float v = (2 * M_PI) * ((float)coord[1] / grid[1]);
d_surface[0] = (0.5 * cos(v) + 0.5) * cos(u);
d_surface[1] = (0.5 * cos(v) + 0.5) * sin(u);
d_surface[2] = sin(v) * cos(u / 2);
d_surface[3] = sin(v) * sin(u / 2);
}
float *generate_data_surface(unsigned char *dim, unsigned long *vertex, struct parm *parm)
{
unsigned int i, j, k, o, p, n;
unsigned long size, q = 0;
float *d_surface;
int *cara;
parm->f = cube;
parm->m = 4;
parm->n = 4;
parm->grid = (unsigned char[]){16, 8, 4, 2, 1};
#ifdef TEST
assert(faces(2) == 1);
assert(faces(3) == 6);
assert(faces(4) == 24);
#endif
*dim = parm->n;
*vertex = 0;
{
unsigned char test = 0;
for (o = 0; o < parm->m; o++)
{
for (p = 0; p < o; p++)
{
test += 1;
*vertex += parm->grid[p] * parm->grid[o] * 6 * faces(parm->n);
}
}
*vertex /= test;
}
cara = malloc(parm->m * sizeof(int));
size = (*dim) * (*vertex);
d_surface = malloc(size * sizeof(float));
for (o = 0; o < parm->m; o++)
{
for (p = 0; p < o; p++)
{
for (k = 0; k < (1 << (parm->m - 2)); k++)
{
unsigned char skip = 0;
for (n = 0; n < parm->m; n++)
{
if (n == o || n == p)
skip++;
cara[n] = (k & (1 << (n - skip))) ? parm->grid[n] : 0;
}
for (i = 0; i < parm->grid[p]; i++)
{
for (j = 0; j < parm->grid[o]; j++)
{
cara[p] = i;
cara[o] = j;
parm->f(&d_surface[q], cara, parm->grid);
q += parm->n;
cara[p] = i + 1;
cara[o] = j;
parm->f(&d_surface[q], cara, parm->grid);
q += parm->n;
cara[p] = i + 1;
cara[o] = j + 1;
parm->f(&d_surface[q], cara, parm->grid);
q += parm->n;
cara[p] = i;
cara[o] = j;
parm->f(&d_surface[q], cara, parm->grid);
q += parm->n;
cara[p] = i;
cara[o] = j + 1;
parm->f(&d_surface[q], cara, parm->grid);
q += parm->n;
cara[p] = i + 1;
cara[o] = j + 1;
parm->f(&d_surface[q], cara, parm->grid);
q += parm->n;
}
}
}
}
}
#ifdef TEST
assert(q == size);
#endif
return d_surface;
}
static void __calculate_normal(
float *p1, float *p2, float *p3, float *normal, unsigned char n)
{
unsigned char i;
float alpha;
float *v1, *v2, *v3;
float *u1, *u2, *u3;
v1 = malloc(n * sizeof(float));
v2 = malloc(n * sizeof(float));
v3 = malloc(n * sizeof(float));
u1 = malloc(n * sizeof(float));
u2 = malloc(n * sizeof(float));
u3 = malloc(n * sizeof(float));
/*
Calculate a normal vector of a plain using Gram-Schmidt process
*/
{
for (i = 0; i < n; ++i)
{
v1[i] = p2[i] - p1[i];
v2[i] = p3[i] - p1[i];
v3[i] = p1[i];
}
for (i = 0; i < n; ++i)
{
u1[i] = v1[i];
}
{
float proj[n];
float dot_v2_u1 = 0.0f, dot_u1_u1 = 0.0f;
for (i = 0; i < n; ++i)
{
dot_v2_u1 += v2[i] * u1[i];
dot_u1_u1 += u1[i] * u1[i];
}
alpha = dot_v2_u1 / dot_u1_u1;
for (i = 0; i < n; ++i)
{
proj[i] = u1[i] * alpha;
u2[i] = v2[i] - proj[i];
}
}
{
float proj1[n], proj2[n];
float dot_v3_u1 = 0.0f, dot_u1_u1 = 0.0f;
float dot_v3_u2 = 0.0f, dot_u2_u2 = 0.0f;
for (i = 0; i < n; ++i)
{
dot_v3_u1 += v3[i] * u1[i];
dot_u1_u1 += u1[i] * u1[i];
}
for (i = 0; i < n; ++i)
{
proj1[i] = u1[i] * (dot_v3_u1 / dot_u1_u1);
}
for (i = 0; i < n; ++i)
{
dot_v3_u2 += v3[i] * u2[i];
dot_u2_u2 += u2[i] * u2[i];
}
for (i = 0; i < n; ++i)
{
proj2[i] = u2[i] * (dot_v3_u2 / dot_u2_u2);
u3[i] = v3[i] - proj1[i] - proj2[i];
}
}
float magnitude = 0.0f;
for (i = 0; i < n; ++i)
{
magnitude += u3[i] * u3[i];
}
magnitude = sqrtf(magnitude);
for (i = 0; i < n; ++i)
{
normal[i] = u3[i] / magnitude;
}
free(v1);
free(v2);
free(v3);
free(u1);
free(u2);
free(u3);
return;
}
}
float *generate_normals_surface(float *d, unsigned char m, unsigned long vertex)
{
float *n;
float *norm_vec;
n = malloc((m * vertex) * sizeof(float));
norm_vec = malloc(m * sizeof(float));
for (int i = 0; i < *d; i += 3 * m)
{
__calculate_normal(d + i, d + i + m, d + i + 2 * m, norm_vec, m);
glm_vec3_copy(norm_vec, n + i);
glm_vec3_copy(norm_vec, n + i + m);
glm_vec3_copy(norm_vec, n + i + 2 * m);
}
free(norm_vec);
return n;
}
int main()
{
struct parm parm_instance;
parm_instance.grid = (unsigned char[]){16, 8, 4, 2, 1};
parm_instance.m = 4;
parm_instance.n = 4;
parm_instance.f = cube;
unsigned char dim;
unsigned long vertex;
float *vertices, *normals;
// Generar datos de la superficie
vertices = generate_data_surface(&dim, &vertex, &parm_instance);
// Verificar datos generados
if (vertices == NULL) {
printf("Error: vertices no generados.\n");
return 1;
}
printf("Dim: %u, Vertex: %lu\n", dim, vertex);
// Generar normales
normals = generate_normals_surface(vertices, dim, vertex);
// Verificar normales generadas
if (normals == NULL) {
printf("Error: normales no generadas.\n");
free(vertices);
return 1;
}
// Escribir el archivo
printf("Escribiendo archivo .klein\n");
write_klein_file("test.klein", dim, vertex, vertices, normals);
free(vertices);
free(normals);
return 0;
}