Files
manigraph/src/surface.c
2024-11-27 19:26:28 -06:00

269 lines
6.0 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#define CGLM_ALL_UNALIGNED
#include <cglm/vec3.h>
#include <cglm/vec4.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
void mobius(float *d_surface, int i, int j, int grid_size)
{
const float width = 0.5;
float u = (2 * M_PI) * ((float)i / grid_size);
float v = (2 * width) * ((float)j / grid_size) - width;
d_surface[0] = cos(u) + v * cos(u / 2) * cos(u);
d_surface[1] = sin(u) + v * cos(u / 2) * sin(u);
d_surface[2] = v * sin(u / 2);
}
void torus(float *d_surface, int i, int j, int grid_size)
{
float u = (2 * M_PI) * ((float)i / grid_size);
float v = (2 * M_PI) * ((float)j / grid_size);
d_surface[0] = (1 + 0.5 * cos(v)) * cos(u);
d_surface[1] = (1 + 0.5 * cos(v)) * sin(u);
d_surface[2] = 0.5 * sin(v);
}
void klein(float *d_surface, int i, int j, int grid_size)
{
float u = (2 * M_PI) * ((float)i / grid_size);
float v = (2 * M_PI) * ((float)j / grid_size);
d_surface[0] = (0.5 * cos(v) + 0.5) * cos(u);
d_surface[1] = (0.5 * cos(v) + 0.5) * sin(u);
d_surface[2] = sin(v) * cos(u / 2);
d_surface[3] = sin(v) * sin(u / 2);
}
typedef void (*function_t)(float *, int, int, int);
float *generate_data_surface(int grid_size, unsigned char *m)
{
unsigned int i, j, k = 0;
long size;
function_t f;
float *d_surface;
f = klein;
*m = 4;
size = grid_size * grid_size * 6 * (*m);
d_surface = malloc((size + 1) * sizeof(float));
d_surface[0] = size;
for (i = 0; i < grid_size; i++)
{
for (j = 0; j < grid_size; j++)
{
// triangle 1, Front
f(&d_surface[k + 1], i, j, grid_size);
k += *m;
f(&d_surface[k + 1], i + 1, j, grid_size);
k += *m;
f(&d_surface[k + 1], i + 1, j + 1, grid_size);
k += *m;
// triangle 2, Back
f(&d_surface[k + 1], i, j, grid_size);
k += *m;
f(&d_surface[k + 1], i, j + 1, grid_size);
k += *m;
f(&d_surface[k + 1], i + 1, j + 1, grid_size);
k += *m;
}
}
return d_surface;
}
/* pa' rearmar la funcion _calc_normal te entendi que creara las funciones de cglm artesanalmente, entonces ps eso hago xd */
void subtract(const float *v1, const float *v2, float *result, unsigned char n)
{
for (unsigned char i = 0; i < n; i++) {
result[i] = v1[i] - v2[i];
}
}
float dot_product(const float *a, const float *b, unsigned char n)
{
float result = 0.0f;
for (unsigned char i = 0; i < n; i++) {
result += a[i] * b[i];
}
return result;
}
void escalar_product(float a, const float *v1, float *result, unsigned char n)
{
for (unsigned char i = 0; i < n; i++) {
result[i] = a * v1[i];
}
}
void norm(const float *v1, float *result, unsigned char n)
{
float lenght = sqrtf(dot_product(v1, v1, n));
float inv_lenght = 1.0f / lenght;
escalar_product(inv_lenght, v1, result, n);
}
static void __calculate_normal(
float *p1, float *p2, float *p3, float *normal, unsigned char n)
{
unsigned char i;
float alpha;
float *v1, *v2, *v3;
float *u1, *u2, *u3;
v1=malloc(n*sizeof(float));
v2=malloc(n*sizeof(float));
v3=malloc(n*sizeof(float));
u1=malloc(n*sizeof(float));
u2=malloc(n*sizeof(float));
u3=malloc(n*sizeof(float));
switch (n)
{
case 3:
glm_vec3_sub(p2, p1, v1);
glm_vec3_sub(p3, p1, v2);
glm_vec3_cross(v1, v2, normal);
glm_vec3_normalize(normal);
return;
/*
In Grant-Shmidth we need 3 linearly independian vector that forms a
basis, so we can have a ortonormal version of that basis, since, we
must have v1 = p3 - p1 v2 = p2 - p1 Then v3 = p1, will most certantly
be linerly independiant to v1 and v2.
*/
default:
for( i=0; i<n; ++i )
{
v1[i]=p2[i]-p1[i]; //cglm_vec4_sub( p2, p1, v1 );
v2[i]=p3[i]-p1[i]; //cglm_vec4_sub( p3, p1, v2 );
v3[i]=p1[i]; //cglm_vec4_copy( p1, v3 );
}
for( i=0; i<n; ++i )
u1[i]=v1[i]; //cglm_vec4_copy( v1, u1 );
{
vec4 proj;
alpha = glm_vec4_dot(v2, u1) / glm_vec4_dot(u1, u1);
glm_vec4_scale(u1, alpha, proj);
glm_vec4_sub(v2, proj, u2);
}
{
vec4 proj1, proj2;
alpha = glm_vec4_dot(v3, u1) / glm_vec4_dot(u1, u1);
glm_vec4_scale(u1, alpha, proj1);
alpha = glm_vec4_dot(v3, u2) / glm_vec4_dot(u2, u2);
glm_vec4_scale(u2, alpha, proj2);
glm_vec4_sub(v3, proj1, u3);
glm_vec4_sub(u3, proj2, u3);
}
glm_vec4_copy(u3, normal);
glm_vec4_normalize(normal);
free(v1);
free(v2);
free(v3);
free(u1);
free(u2);
free(u3);
return;
#if 0
default:
u = malloc((n - 1) * sizeof(float *));
for (unsigned char i = 0; i < n - 1; i++)
{
u[i] = malloc(n * sizeof(float));
}
for (unsigned char i = 0; i < n - 1; i++)
{
float *vi = malloc(n * sizeof(float));
for (unsigned char j = 0; j < n; j++)
{
vi[j] = p2[j] - p1[j];
}
for (unsigned char j = 0; j < i; j++)
{
float dot_vu = 0.0f, dot_uu = 0.0f;
for (unsigned char k = 0; k < n; k++)
{
dot_vu += vi[k] * u[j][k];
dot_uu += u[j][k] * u[j][k];
}
for (unsigned char k = 0; k < n; k++)
{
vi[k] -= (dot_vu / dot_uu) * u[j][k];
}
}
memcpy(u[i], vi, n * sizeof(float));
free(vi);
}
memcpy(normal, u[n - 2], n * sizeof(float));
float norm = 0.0f;
for (unsigned char i = 0; i < n; i++)
{
norm += normal[i] * normal[i];
}
norm = sqrtf(norm);
for (unsigned char i = 0; i < n; i++)
{
normal[i] /= norm;
}
for (unsigned char i = 0; i < n - 1; i++)
{
free(u[i]);
}
free(u);
return;
#endif
}
}
float *generate_normals_surface(float *d, unsigned char m)
{
float *n;
n = malloc((*d + 1) * sizeof(float));
*n = *d;
float * norm_vec;
norm_vec=malloc(m*sizeof(float));
for (int i = 0; i < *d; i += 3 * m)
{
__calculate_normal(
(d + 1) + i, (d + 1) + i + m, (d + 1) + i + 2 * m, norm_vec, m);
glm_vec3_copy(norm_vec, (n + 1) + i);
glm_vec3_copy(norm_vec, (n + 1) + i + m);
glm_vec3_copy(norm_vec, (n + 1) + i + 2 * m);
}
free(norm_vec);
return n;
}