Files
manigraph/src/surface.c
2024-11-27 17:21:59 -06:00

235 lines
4.7 KiB
C

#include <complex.h>
#include <math.h>
#include <stdlib.h>
#define CGLM_ALL_UNALIGNED
#include <cglm/vec3.h>
#include <cglm/vec4.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef CMPLX
#define CMPLX(a,b) (a+I*b)
#endif
void riemman(float *d_surface, int * coords, int grid_size)
{
complex double eq;
float u = 2 * ((float)coords[0] / grid_size) - 1;
float v = 2 * ((float)coords[1] / grid_size) - 1;
eq = csqrt(CMPLX(u,v));
d_surface[0] = u;
d_surface[1] = v;
d_surface[2] = creal(eq);
d_surface[3] = cimag(eq);
}
void cube( float *d_surface, int * coord, int grid_size )
{
unsigned char i;
for(int i=0; i<4; i++ )
d_surface[i]=(float)coord[i]/grid_size;
}
void mobius(float *d_surface, int * coord, int grid_size)
{
const float width = 0.5;
float u = (2 * M_PI) * ((float)coord[0] / grid_size);
float v = (2 * width) * ((float)coord[1] / grid_size) - width;
d_surface[0] = cos(u) + v * cos(u / 2) * cos(u);
d_surface[1] = sin(u) + v * cos(u / 2) * sin(u);
d_surface[2] = v * sin(u / 2);
}
void torus(float *d_surface, int * coord, int grid_size)
{
float u = (2 * M_PI) * ((float)coord[0] / grid_size);
float v = (2 * M_PI) * ((float)coord[1] / grid_size);
d_surface[0] = (1 + 0.5 * cos(v)) * cos(u);
d_surface[1] = (1 + 0.5 * cos(v)) * sin(u);
d_surface[2] = 0.5 * sin(v);
}
void klein(float *d_surface, int * coord, int grid_size)
{
float u = (2 * M_PI) * ((float)coord[0] / grid_size);
float v = (2 * M_PI) * ((float)coord[1]/ grid_size);
d_surface[0] = (0.5 * cos(v) + 0.5) * cos(u);
d_surface[1] = (0.5 * cos(v) + 0.5) * sin(u);
d_surface[2] = sin(v) * cos(u / 2);
d_surface[3] = sin(v) * sin(u / 2);
}
typedef void (*function_t)(float *, int *, int);
float *generate_data_surface(int grid_size, unsigned char *s)
{
unsigned int i, j, k, o, p, l, n, m;
long size, q=0;
function_t f;
float *d_surface;
const int dim =2;
int cara[dim];
char bits[dim+1];
bits[dim]=0;
f =klein ;
*s = 4;
size = grid_size * grid_size * 6 * (*s) * 24;
d_surface = malloc((size + 1) * sizeof(float));
d_surface[0] = size;
for(o = 0; o < dim; o ++)
{
for (p = 0; p < o; p++)
{
for (k = 0; k < (1 << (dim-2)); k++)
{
unsigned char skip=0;
for(n = 0; n < dim-2; n++)
{
if( n==(o-1) || n==p )
skip++;
cara[n+skip] = (k & (1<<n))?grid_size:0;
}
for(i = 0; i < grid_size; i++)
{
for (j = 0; j < grid_size; j++)
{
cara[o] = i;
cara[p] = j;
f(&d_surface[q + 1], cara, grid_size);
q += *s;
cara[o] = i + 1;
cara[p] = j;
f(&d_surface[q + 1], cara, grid_size);
q += *s;
cara[o] = i + 1;
cara [p] = j + 1;
f(&d_surface[q + 1], cara, grid_size);
q += *s;
cara[o] = i;
cara [p] = j;
f(&d_surface[q + 1], cara, grid_size);
q += *s;
cara[o] = i;
cara [p] = j + 1;
f(&d_surface[q + 1], cara, grid_size);
q += *s;
cara[o] = i + 1;
cara [p] = j + 1;
f(&d_surface[q + 1], cara, grid_size);
q += *s;
}
}
}
}
}
return d_surface;
}
static void __calculate_normal(
float *p1, float *p2, float *p3, float *normal, unsigned char n)
{
float alpha;
vec4 v1, v2, v3;
vec4 u1, u2, u3;
switch (n)
{
case 3:
glm_vec3_sub(p2, p1, v1);
glm_vec3_sub(p3, p1, v2);
glm_vec3_cross(v1, v2, normal);
glm_vec3_normalize(normal);
return;
case 4:
/*
In Grant-Shmidth we need 3 linearly independian vector that forms a
basis, so we can have a ortonormal version of that basis, since, we
must have v1 = p3 - p1 v2 = p2 - p1 Then v3 = p1, will most certantly
be linerly independiant to v1 and v2.
*/
glm_vec4_sub(p2, p1, v1);
glm_vec4_sub(p3, p1, v2);
glm_vec4_copy(p1, v3);
/* Setup U1 */
{
glm_vec4_copy(v1, u1);
}
/* Setup U2 */
{
vec4 proj;
alpha = glm_vec4_dot(v2, u1) / glm_vec4_dot(u1, u1);
glm_vec4_scale(u1, alpha, proj);
glm_vec4_sub(v2, proj, u2);
}
/* Setup U3 */
{
vec4 proj1, proj2;
alpha = glm_vec4_dot(v3, u1) / glm_vec4_dot(u1, u1);
glm_vec4_scale(u1, alpha, proj1);
alpha = glm_vec4_dot(v3, u2) / glm_vec4_dot(u2, u2);
glm_vec4_scale(u2, alpha, proj2);
glm_vec4_sub(v3, proj1, u3);
glm_vec4_sub(u3, proj2, u3);
}
glm_vec4_copy(u3, normal);
glm_vec4_normalize(normal);
return;
}
}
float *generate_normals_surface(float *d, unsigned char m)
{
float *n;
n = malloc((*d + 1) * sizeof(float));
*n = *d;
for (int i = 0; i < *d; i += 3 * m)
{
vec4 norm_vec;
__calculate_normal(
(d + 1) + i, (d + 1) + i + m, (d + 1) + i + 2 * m, norm_vec, m);
glm_vec3_copy(norm_vec, (n + 1) + i);
glm_vec3_copy(norm_vec, (n + 1) + i + m);
glm_vec3_copy(norm_vec, (n + 1) + i + 2 * m);
}
return n;
}