7 Commits
alan2 ... alan

Author SHA1 Message Date
alan
7d3f8f71b2 habemos botella de klein 2024-10-18 15:01:38 -06:00
PedroEdiaz
5f392792c5 Fix: trous, the good one 2024-10-18 10:35:42 -06:00
PedroEdiaz
a131ff6da1 Fix: Torus 2024-10-18 10:27:38 -06:00
alan
27d43e6bca funciones renombradas 2024-10-18 09:44:38 -06:00
alan
994bd3987c Toro agregado 2024-10-18 09:30:11 -06:00
PedroEdiaz
af2c2afa1d Fix alan 2024-10-17 20:14:50 -06:00
alan
7333f3933c Grafica algo pero no la banda 2024-10-17 19:37:00 -06:00
23 changed files with 345 additions and 6080 deletions

View File

@@ -1,19 +0,0 @@
---
PointerAlignment: Right
AllowShortBlocksOnASingleLine: Never
UseTab: Always
IndentWidth: 4
TabWidth: 4
ColumnLimit: 80
AlignAfterOpenBracket: false
AlignOperands: AlignAfterOperator
AlwaysBreakBeforeMultilineStrings: true
BreakBeforeBraces: Allman
BreakStringLiterals: true
IndentCaseLabels: false
IndentGotoLabels: false
InsertBraces: false
...

5
.gitignore vendored
View File

@@ -1,5 +0,0 @@
manigraph
**.o
**.so
**.exe
**.dll

3
.gitmodules vendored
View File

@@ -4,6 +4,3 @@
[submodule "ext/glfw"]
path = ext/glfw
url = https://github.com/glfw/glfw
[submodule "ext/nuklear"]
path = ext/nuklear
url = https://github.com/Immediate-Mode-UI/Nuklear

View File

@@ -1,7 +1,6 @@
BIN = manigraph
OBJ = \
ext/glad/glad.o \
src/surface.o \
src/context.o \
src/texture.o \
@@ -15,20 +14,7 @@ OBJ = \
CFLAGS = \
-I./ext/cglm/include \
-I./ext/glfw/include \
-I./ext/glad \
-DGLAD \
-Wall -Wno-unused-function -std=c99 -D_GNU_SOURCE \
WAYLAND-LIB = \
xdg-shell \
relative-pointer-unstable-v1 \
xdg-decoration-unstable-v1 \
pointer-constraints-unstable-v1 \
viewporter \
idle-inhibit-unstable-v1 \
fractional-scale-v1 \
xdg-activation-v1 \
wayland
-Wall -Wno-unused-function -std=c99 \
help:
@echo "Para compilar el proyecto a tu sistema operativo"
@@ -37,16 +23,11 @@ help:
@echo " $(MAKE) linux-x11"
@echo " $(MAKE) linux-wayland"
@echo " $(MAKE) cocoa"
@echo " $(MAKE) CC=emcc wasm"
@echo "Para limpiar los archivos compilados se puede usar"
@echo " $(MAKE) clean"
@echo "Para ejecturar el programa sin instalarlos se puede usar:"
@echo " $(MAKE) run-linux"
src/main.o: src/data/axis.h src/data/shaders.h
$(OBJ): src/main.h
# WINDOWS
windows: $(OBJ) glfw.dll
$(CC) $(CFLAGS) $(OBJ) -o $(BIN) -L. -lglfw -lopengl32 -lglew32
@@ -54,20 +35,15 @@ windows: $(OBJ) glfw.dll
glfw.dll:
$(CC) -fPIC -shared -D_GLFW_WIN32 -D_GLFW_BUILD_DLL ./ext/glfw/src/*.c -o $@ -lgdi32
src/main.o: src/data/shaders.h src/data/axis.h
src/main.o: src/data/shaders.h src/data/cube.h src/data/axis.h
# LINUX
linux-wayland: $(OBJ)
for i in $(WAYLAND-LIB); \
do \
wayland-scanner client-header ext/glfw/deps/wayland/$$i.xml ext/glfw/deps/wayland/$$i-client-protocol.h; \
wayland-scanner private-code ext/glfw/deps/wayland/$$i.xml ext/glfw/deps/wayland/$$i-client-protocol-code.h; \
done
$(MAKE) DFLAGS="-D_GLFW_WAYLAND" libglfw.so
linux-x11: $(OBJ)
$(MAKE) BKN=_GLFW_X11 libglfw.so
$(CC) -o $(BIN) $(OBJ) -L. -lGLEW -lGL -lglfw -lm
linux-x11: $(OBJ)
$(MAKE) DFLAGS="-D_GLFW_X11" libglfw.so
linux-wayland: $(OBJ)
$(MAKE) BKN=_GLFW_WAYLAND libglfw.so
$(CC) -o $(BIN) $(OBJ) -L. -lGLEW -lGL -lglfw -lm
run-linux:
@@ -75,19 +51,16 @@ run-linux:
# COCOA
cocoa: $(OBJ)
$(MAKE) DFLAGS="-D_GLFW_COCOA" libglfw.so
$(CC) -framework OpenGL -o $(BIN) $(OBJ) -L. -lGLEW -lGL -lglfw
$(MAKE) BKN=_GLFW_COCOA libglfw.so
$(CC) -framework OpenGL -o $(BIN) $(OBJ) -L. -lGLEW -lGL -lglfw
wasm: $(OBJ)
$(CC) -sUSE_WEBGL2=1 -sUSE_GLFW=3 -o mani.html $(OBJ)
libglfw.so:
$(CC) -fPIC -shared $(DFLAGS) -D_GLFW_BUILD_DLL -Iext/glfw/deps/wayland ./ext/glfw/src/*.c -o $@
libglfw.so:
$(CC) -fPIC -shared -D$(BKN) -D_GLFW_BUILD_DLL ./ext/glfw/src/*.c -o $@
clean:
rm $(OBJ) $(BIN) ext/glfw/deps/wayland/*.h
rm $(OBJ) $(BIN)
.SUFFIXES: .c .o
.SUFFIXES: .c .o
.c.o:
$(CC) $(CFLAGS) -c -o $@ $<

View File

@@ -18,7 +18,7 @@ Para poder compilar el proyecto hace falta lo siguiente.
- `glfw`: A multi-platform library for OpenGL, OpenGL ES, Vulkan, window and input.
- `cglm`: Highly Optimized 2D / 3D Graphics Math (glm) for C.
### Linux
Para compilar `glfw` en linux hacen falta las siguientes librerías. (no incluidas)
Para compilar `glfw` en linux hacen falta las siguientes librerías según el caso. (no incluidas)
- `x11`: libXcursor-devel libXi-devel libXinerama-devel libXrandr-devel
- `wayland`: libwayland-dev libxkbcommon-dev wayland-protocols

View File

@@ -1,3 +0,0 @@
:: git submodule update --init --recursive
:: gcc -fPIC -shared -Iext/glfw/deps/MinGW -D_GLFW_WIN32 -D_GLFW_BUILD_DLL ./ext/glfw/src/*.c -o glfw.dll -lgdi32
gcc -I ext/cglm/include -I ext/glfw/include src/*.c -o manigraph -L . -lglfw -lopengl32 -lglew32

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,311 +0,0 @@
#ifndef __khrplatform_h_
#define __khrplatform_h_
/*
** Copyright (c) 2008-2018 The Khronos Group Inc.
**
** Permission is hereby granted, free of charge, to any person obtaining a
** copy of this software and/or associated documentation files (the
** "Materials"), to deal in the Materials without restriction, including
** without limitation the rights to use, copy, modify, merge, publish,
** distribute, sublicense, and/or sell copies of the Materials, and to
** permit persons to whom the Materials are furnished to do so, subject to
** the following conditions:
**
** The above copyright notice and this permission notice shall be included
** in all copies or substantial portions of the Materials.
**
** THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
** MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
*/
/* Khronos platform-specific types and definitions.
*
* The master copy of khrplatform.h is maintained in the Khronos EGL
* Registry repository at https://github.com/KhronosGroup/EGL-Registry
* The last semantic modification to khrplatform.h was at commit ID:
* 67a3e0864c2d75ea5287b9f3d2eb74a745936692
*
* Adopters may modify this file to suit their platform. Adopters are
* encouraged to submit platform specific modifications to the Khronos
* group so that they can be included in future versions of this file.
* Please submit changes by filing pull requests or issues on
* the EGL Registry repository linked above.
*
*
* See the Implementer's Guidelines for information about where this file
* should be located on your system and for more details of its use:
* http://www.khronos.org/registry/implementers_guide.pdf
*
* This file should be included as
* #include <KHR/khrplatform.h>
* by Khronos client API header files that use its types and defines.
*
* The types in khrplatform.h should only be used to define API-specific types.
*
* Types defined in khrplatform.h:
* khronos_int8_t signed 8 bit
* khronos_uint8_t unsigned 8 bit
* khronos_int16_t signed 16 bit
* khronos_uint16_t unsigned 16 bit
* khronos_int32_t signed 32 bit
* khronos_uint32_t unsigned 32 bit
* khronos_int64_t signed 64 bit
* khronos_uint64_t unsigned 64 bit
* khronos_intptr_t signed same number of bits as a pointer
* khronos_uintptr_t unsigned same number of bits as a pointer
* khronos_ssize_t signed size
* khronos_usize_t unsigned size
* khronos_float_t signed 32 bit floating point
* khronos_time_ns_t unsigned 64 bit time in nanoseconds
* khronos_utime_nanoseconds_t unsigned time interval or absolute time in
* nanoseconds
* khronos_stime_nanoseconds_t signed time interval in nanoseconds
* khronos_boolean_enum_t enumerated boolean type. This should
* only be used as a base type when a client API's boolean type is
* an enum. Client APIs which use an integer or other type for
* booleans cannot use this as the base type for their boolean.
*
* Tokens defined in khrplatform.h:
*
* KHRONOS_FALSE, KHRONOS_TRUE Enumerated boolean false/true values.
*
* KHRONOS_SUPPORT_INT64 is 1 if 64 bit integers are supported; otherwise 0.
* KHRONOS_SUPPORT_FLOAT is 1 if floats are supported; otherwise 0.
*
* Calling convention macros defined in this file:
* KHRONOS_APICALL
* KHRONOS_APIENTRY
* KHRONOS_APIATTRIBUTES
*
* These may be used in function prototypes as:
*
* KHRONOS_APICALL void KHRONOS_APIENTRY funcname(
* int arg1,
* int arg2) KHRONOS_APIATTRIBUTES;
*/
#if defined(__SCITECH_SNAP__) && !defined(KHRONOS_STATIC)
# define KHRONOS_STATIC 1
#endif
/*-------------------------------------------------------------------------
* Definition of KHRONOS_APICALL
*-------------------------------------------------------------------------
* This precedes the return type of the function in the function prototype.
*/
#if defined(KHRONOS_STATIC)
/* If the preprocessor constant KHRONOS_STATIC is defined, make the
* header compatible with static linking. */
# define KHRONOS_APICALL
#elif defined(_WIN32)
# define KHRONOS_APICALL __declspec(dllimport)
#elif defined (__SYMBIAN32__)
# define KHRONOS_APICALL IMPORT_C
#elif defined(__ANDROID__)
# define KHRONOS_APICALL __attribute__((visibility("default")))
#else
# define KHRONOS_APICALL
#endif
/*-------------------------------------------------------------------------
* Definition of KHRONOS_APIENTRY
*-------------------------------------------------------------------------
* This follows the return type of the function and precedes the function
* name in the function prototype.
*/
#if defined(_WIN32) && !defined(_WIN32_WCE) && !defined(__SCITECH_SNAP__)
/* Win32 but not WinCE */
# define KHRONOS_APIENTRY __stdcall
#else
# define KHRONOS_APIENTRY
#endif
/*-------------------------------------------------------------------------
* Definition of KHRONOS_APIATTRIBUTES
*-------------------------------------------------------------------------
* This follows the closing parenthesis of the function prototype arguments.
*/
#if defined (__ARMCC_2__)
#define KHRONOS_APIATTRIBUTES __softfp
#else
#define KHRONOS_APIATTRIBUTES
#endif
/*-------------------------------------------------------------------------
* basic type definitions
*-----------------------------------------------------------------------*/
#if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__GNUC__) || defined(__SCO__) || defined(__USLC__)
/*
* Using <stdint.h>
*/
#include <stdint.h>
typedef int32_t khronos_int32_t;
typedef uint32_t khronos_uint32_t;
typedef int64_t khronos_int64_t;
typedef uint64_t khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
/*
* To support platform where unsigned long cannot be used interchangeably with
* inptr_t (e.g. CHERI-extended ISAs), we can use the stdint.h intptr_t.
* Ideally, we could just use (u)intptr_t everywhere, but this could result in
* ABI breakage if khronos_uintptr_t is changed from unsigned long to
* unsigned long long or similar (this results in different C++ name mangling).
* To avoid changes for existing platforms, we restrict usage of intptr_t to
* platforms where the size of a pointer is larger than the size of long.
*/
#if defined(__SIZEOF_LONG__) && defined(__SIZEOF_POINTER__)
#if __SIZEOF_POINTER__ > __SIZEOF_LONG__
#define KHRONOS_USE_INTPTR_T
#endif
#endif
#elif defined(__VMS ) || defined(__sgi)
/*
* Using <inttypes.h>
*/
#include <inttypes.h>
typedef int32_t khronos_int32_t;
typedef uint32_t khronos_uint32_t;
typedef int64_t khronos_int64_t;
typedef uint64_t khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif defined(_WIN32) && !defined(__SCITECH_SNAP__)
/*
* Win32
*/
typedef __int32 khronos_int32_t;
typedef unsigned __int32 khronos_uint32_t;
typedef __int64 khronos_int64_t;
typedef unsigned __int64 khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif defined(__sun__) || defined(__digital__)
/*
* Sun or Digital
*/
typedef int khronos_int32_t;
typedef unsigned int khronos_uint32_t;
#if defined(__arch64__) || defined(_LP64)
typedef long int khronos_int64_t;
typedef unsigned long int khronos_uint64_t;
#else
typedef long long int khronos_int64_t;
typedef unsigned long long int khronos_uint64_t;
#endif /* __arch64__ */
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif 0
/*
* Hypothetical platform with no float or int64 support
*/
typedef int khronos_int32_t;
typedef unsigned int khronos_uint32_t;
#define KHRONOS_SUPPORT_INT64 0
#define KHRONOS_SUPPORT_FLOAT 0
#else
/*
* Generic fallback
*/
#include <stdint.h>
typedef int32_t khronos_int32_t;
typedef uint32_t khronos_uint32_t;
typedef int64_t khronos_int64_t;
typedef uint64_t khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#endif
/*
* Types that are (so far) the same on all platforms
*/
typedef signed char khronos_int8_t;
typedef unsigned char khronos_uint8_t;
typedef signed short int khronos_int16_t;
typedef unsigned short int khronos_uint16_t;
/*
* Types that differ between LLP64 and LP64 architectures - in LLP64,
* pointers are 64 bits, but 'long' is still 32 bits. Win64 appears
* to be the only LLP64 architecture in current use.
*/
#ifdef KHRONOS_USE_INTPTR_T
typedef intptr_t khronos_intptr_t;
typedef uintptr_t khronos_uintptr_t;
#elif defined(_WIN64)
typedef signed long long int khronos_intptr_t;
typedef unsigned long long int khronos_uintptr_t;
#else
typedef signed long int khronos_intptr_t;
typedef unsigned long int khronos_uintptr_t;
#endif
#if defined(_WIN64)
typedef signed long long int khronos_ssize_t;
typedef unsigned long long int khronos_usize_t;
#else
typedef signed long int khronos_ssize_t;
typedef unsigned long int khronos_usize_t;
#endif
#if KHRONOS_SUPPORT_FLOAT
/*
* Float type
*/
typedef float khronos_float_t;
#endif
#if KHRONOS_SUPPORT_INT64
/* Time types
*
* These types can be used to represent a time interval in nanoseconds or
* an absolute Unadjusted System Time. Unadjusted System Time is the number
* of nanoseconds since some arbitrary system event (e.g. since the last
* time the system booted). The Unadjusted System Time is an unsigned
* 64 bit value that wraps back to 0 every 584 years. Time intervals
* may be either signed or unsigned.
*/
typedef khronos_uint64_t khronos_utime_nanoseconds_t;
typedef khronos_int64_t khronos_stime_nanoseconds_t;
#endif
/*
* Dummy value used to pad enum types to 32 bits.
*/
#ifndef KHRONOS_MAX_ENUM
#define KHRONOS_MAX_ENUM 0x7FFFFFFF
#endif
/*
* Enumerated boolean type
*
* Values other than zero should be considered to be true. Therefore
* comparisons should not be made against KHRONOS_TRUE.
*/
typedef enum {
KHRONOS_FALSE = 0,
KHRONOS_TRUE = 1,
KHRONOS_BOOLEAN_ENUM_FORCE_SIZE = KHRONOS_MAX_ENUM
} khronos_boolean_enum_t;
#endif /* __khrplatform_h_ */

Submodule ext/nuklear deleted from 6566d9075d

View File

@@ -1,35 +1,13 @@
#include "main.h"
#ifdef EMSCRIPTEN
#include <GL/gl.h>
#else
#ifdef GLAD
#include <glad.h>
#include <GLFW/glfw3.h>
#else
#include <GL/glew.h>
#endif
#endif
void set_clean_color_context(unsigned char r, unsigned char g, unsigned char b)
void set_clean_color_context( unsigned char r, unsigned char g, unsigned char b )
{
glEnable(GL_DEPTH_TEST);
glClearColor((float)r / 0xff, (float)g / 0xff, (float)b / 0xff, 1.0);
glEnable( GL_DEPTH_TEST );
glClearColor( (float)r/0xff, (float)g/0xff, (float)b/0xff, 1.0 );
}
int init_context(void)
void clean_context( void )
{
#ifdef EMSCRIPTEN
return 1;
#else
#ifdef GLAD
return gladLoadGLLoader((GLADloadproc)glfwGetProcAddress);
#else
return glewInit();
#endif
#endif
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
}
void clean_context(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); }

View File

@@ -1,40 +1,45 @@
#undef A
#undef B
#undef C
#undef B
#undef C
#undef D
#undef E
#undef F
#undef G
#undef G
#undef H
#define A -2.0,-0.05,-0.05,
#define B -2.0,-0.05, 0.05,
#define C -2.0, 0.05,-0.05,
#define D -2.0, 0.05, 0.05,
#define E 2.0,-0.05,-0.05,
#define F 2.0,-0.05, 0.05,
#define G 2.0, 0.05,-0.05,
#define H 2.0, 0.05, 0.05,
const float X = 2.0;
const float Y = 0.05;
const float Z = 0.05;
#define A -X,-Y,-Z,
#define B -X,-Y, Z,
#define C -X, Y,-Z,
#define D -X, Y, Z,
#define E X,-Y,-Z,
#define F X,-Y, Z,
#define G X, Y,-Z,
#define H X, Y, Z,
float d_axis[] =
{
3*3*2*6,
A C E
G E C
C E G
E G F
H F G
G F H
F H B
D B H
H B D
B D A
C A D
D A C
C D G
H G D
D G H
E B A
A B E
B E F
};

32
src/data/cube.h Normal file
View File

@@ -0,0 +1,32 @@
#define A -1,-1,-1,
#define B -1,-1, 1,
#define C -1, 1,-1,
#define D -1, 1, 1,
#define E 1,-1,-1,
#define F 1,-1, 1,
#define G 1, 1,-1,
#define H 1, 1, 1,
narray_float_t d_cube =
{
3*3*2*6,
A C E
C E G
E G F
G F H
F H B
H B D
B D A
D A C
C D G
D G H
A B E
B E F
};

View File

@@ -1,19 +1,7 @@
const char * vs =
#ifdef EMSCRIPTEN
"#version 300 es\n"
"precision highp float;"
#else
"#version 330 core\n"
#endif
"layout (location = 0) in float aPos_x;"
"layout (location = 1) in float aPos_y;"
"layout (location = 2) in float aPos_z;"
"layout (location = 3) in float aPos_w;"
"layout (location = 4) in float aNormal_x;"
"layout (location = 5) in float aNormal_y;"
"layout (location = 6) in float aNormal_z;"
"layout (location = 7) in float aNormal_w;"
"layout (location = 0) in vec3 aPos;"
"uniform float idx;"
"uniform mat4 fix;"
@@ -21,73 +9,22 @@ const char * vs =
"uniform mat4 mdl;"
"out float index;"
"out vec3 Normal;"
"out vec3 FragPos;"
"void main()"
"{"
" index=idx;"
" vec3 aNormal = vec3(aNormal_x,aNormal_y,aNormal_z);"
" vec3 aPos = vec3(aPos_x,aPos_y,aPos_z);"
" Normal = mat3(transpose(inverse(rot*mdl))) * aNormal;"
" gl_Position = fix * rot * mdl * vec4( aPos, 1.0 );\n"
" FragPos = vec3( rot * mdl * vec4(aPos, 1.0));"
"}";
const char * fs_plain =
#ifdef EMSCRIPTEN
"#version 300 es\n"
"precision highp float;"
"precision highp sampler2DArray;"
#else
const char * fs =
"#version 330 core\n"
#endif
"uniform sampler2DArray palette;"
"in float index;"
"out vec4 FragColor;"
"in vec3 Normal;"
"in vec3 FragPos;"
"void main()"
"{"
" FragColor = texture( palette, vec3( 0, 0, index ) ).rgba;"
"}";
const char * fs =
#ifdef EMSCRIPTEN
"#version 300 es\n"
"precision highp float;"
"precision highp sampler2DArray;"
#else
"#version 330 core\n"
#endif
"uniform sampler2DArray palette;"
"in float index;"
"in vec3 Normal;"
"in vec3 FragPos;"
"out vec4 FragColor;"
"void main()"
"{"
" vec4 color = texture(palette, vec3(0, 0, index));\n"
" vec3 viewPos = vec3(0, 0, -15);\n"
" vec3 viewDir = normalize(viewPos - FragPos);\n"
" vec3 lightPos = viewPos;\n"
" vec3 lightDir = normalize(lightPos - FragPos);\n"
" vec3 halfwayDir = normalize(lightDir + viewDir);\n"
" float specular = pow(max(dot(normalize(Normal), halfwayDir), 0.0), 16.0);\n"
" float diffuse = max(dot(normalize(Normal), lightDir), 0.0);\n"
" vec3 result = (0.5 + 0.5 * diffuse + specular) * color.rgb;\n"
" FragColor = vec4(result, color.a);\n"
"}";

View File

@@ -1,9 +1,8 @@
#include "main.h"
#include <GLFW/glfw3.h>
#include <cglm/quat.h>
#include <stdio.h>
#include <GLFW/glfw3.h>
#define ANGLE ((float)0x01 / 0xff * 2 * GLM_PI)
#define ANGLE ((float)0x01/0xff*2*GLM_PI)
unsigned char selected_axis = 0;
int window_width;
@@ -11,67 +10,14 @@ int window_height;
versor q = GLM_QUAT_IDENTITY_INIT;
vec3 axis[3] = {
vec3 axis[3] =
{
{1, 0, 0},
{0, 1, 0},
{0, 0, 1},
};
extern struct projection projection;
void __key_callback_input(
GLFWwindow *window, int key, int scancode, int action, int mods)
{
if (action != GLFW_PRESS)
return;
if (GLFW_KEY_0 < key && key <= GLFW_KEY_9)
{
unsigned char selected_coord;
selected_coord = key - GLFW_KEY_0 - 1;
if (selected_coord >= projection.m)
return;
if (selected_coord == projection.x)
return;
if (selected_coord == projection.y)
return;
if (selected_coord == projection.z)
return;
selected_coord = projection.w;
}
if (projection.w >= projection.m)
return;
switch (key)
{
unsigned char tmp;
case GLFW_KEY_P:
tmp = projection.w;
projection.w = projection.x;
projection.x = tmp;
break;
case GLFW_KEY_O:
tmp = projection.w;
projection.w = projection.y;
projection.y = tmp;
break;
case GLFW_KEY_I:
tmp = projection.w;
projection.w = projection.z;
projection.z = tmp;
break;
}
set_projection_mesh(projection);
return;
}
void __window_callback_input(GLFWwindow *window, int w, int h)
void __window_callback(GLFWwindow * window, int w, int h)
{
int m;
@@ -82,33 +28,32 @@ void __window_callback_input(GLFWwindow *window, int w, int h)
glViewport((w - m) / 2, (h - m) / 2, m, m);
}
void __mouse_callback_input(
GLFWwindow *window, int button, int action, int mods)
void __mouse_callback(GLFWwindow* window, int button, int action, int mods)
{
unsigned char green_value;
double xpos, ypos;
if (button != GLFW_MOUSE_BUTTON_LEFT || action != GLFW_PRESS)
return;
if( button != GLFW_MOUSE_BUTTON_LEFT || action != GLFW_PRESS )
return;
glfwGetCursorPos(window, &xpos, &ypos);
glReadPixels((int)xpos, (int)(window_height - ypos), 1, 1, GL_GREEN,
GL_UNSIGNED_BYTE, &green_value);
glReadPixels((int)xpos, (int)(window_height - ypos), 1, 1, GL_GREEN, GL_UNSIGNED_BYTE, &green_value);
switch (green_value)
switch(green_value)
{
case 0xD3:
case 0xD4:
case 0xD5:
selected_axis = green_value - 0xD3;
selected_axis = green_value-0xD3;
}
}
void __scroll_callback_input(GLFWwindow *window, double xoffset, double yoffset)
void __scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
versor p = GLM_QUAT_IDENTITY_INIT;
glm_quatv(p, yoffset * ANGLE, axis[selected_axis]);
glm_quatv(p, yoffset*ANGLE, axis[selected_axis]);
glm_quat_mul(p, q, q);
glm_quat_rotatev(p, axis[0], axis[0]);
@@ -120,42 +65,43 @@ quat_t poll_input(window_t window)
{
versor p = GLM_QUAT_IDENTITY_INIT;
if (glfwGetKey((GLFWwindow *)window, 'Q') == GLFW_PRESS)
if( glfwGetKey((GLFWwindow*)window, 'Q') == GLFW_PRESS )
{
glm_quatv(p, ANGLE, axis[0]);
goto end;
}
if (glfwGetKey((GLFWwindow *)window, 'W') == GLFW_PRESS)
if( glfwGetKey((GLFWwindow*)window, 'W') == GLFW_PRESS )
{
glm_quatv(p, -ANGLE, axis[0]);
goto end;
}
if (glfwGetKey((GLFWwindow *)window, 'A') == GLFW_PRESS)
if( glfwGetKey((GLFWwindow*)window, 'A') == GLFW_PRESS )
{
glm_quatv(p, ANGLE, axis[1]);
goto end;
}
if (glfwGetKey((GLFWwindow *)window, 'S') == GLFW_PRESS)
if( glfwGetKey((GLFWwindow*)window, 'S') == GLFW_PRESS )
{
glm_quatv(p, -ANGLE, axis[1]);
goto end;
}
if (glfwGetKey((GLFWwindow *)window, 'Z') == GLFW_PRESS)
if( glfwGetKey((GLFWwindow*)window, 'Z') == GLFW_PRESS )
{
glm_quatv(p, ANGLE, axis[2]);
goto end;
}
if (glfwGetKey((GLFWwindow *)window, 'X') == GLFW_PRESS)
if( glfwGetKey((GLFWwindow*)window, 'X') == GLFW_PRESS )
{
glm_quatv(p, -ANGLE, axis[2]);
goto end;
}
end:
glm_quat_mul(p, q, q);
glm_quat_rotatev(p, axis[0], axis[0]);
glm_quat_rotatev(p, axis[1], axis[1]);
glm_quat_rotatev(p, axis[2], axis[2]);
glm_quat_normalize(q);
glm_quat_mul( p, q, q );
glm_quat_rotatev( p, axis[0], axis[0] );
glm_quat_rotatev( p, axis[1], axis[1] );
glm_quat_rotatev( p, axis[2], axis[2] );
glm_quat_normalize( q );
return q;
}

View File

@@ -1,194 +1,97 @@
#include "main.h"
#include "data/axis.h"
#include "data/shaders.h"
#include <stdio.h>
#include <stdlib.h>
#include <GL/glew.h>
#include <stdlib.h>
#define WIDTH 512
#define HEIGHT 512
#ifdef EMSCRIPTEN
#include <emscripten.h>
#endif
float *generate_data_surface(unsigned int, unsigned char *);
float *generate_normals_surface(float *, unsigned char);
const char *wname = "manigraph: manifold grapher";
struct projection projection = {.x = 0, .y = 1, .z = 2, .w = 3};
unsigned char palette[][4] = {
{0xEB, 0xD3, 0xF8, 0xff},
{0xEB, 0xD4, 0xF8, 0xff},
{0xEB, 0xD5, 0xF8, 0xff},
{0x7A, 0x1C, 0xAC, 0xff},
unsigned char palette[] =
{
16,
0xEB,0xD3,0xF8,0xff,
0xEB,0xD4,0xF8,0xff,
0xEB,0xD5,0xF8,0xff,
0x7A,0x1C,0xAC,0xff,
};
void mlog(char *msg)
const char * wname = "manigraph: manifold grapher";
float * generate_surface();
int main( void )
{
#ifdef DEBUG
printf(msg);
#endif
}
float * points;
id_t shader, texture;
mesh_t m_cube, m_axis;
window_t window;
window_t window;
mesh_t m_surface, m_axis;
id_t shader, shader_plain;
if( !( window = init_window( WIDTH, HEIGHT, wname ) ) )
goto error_window;
#ifndef EMSCRIPTEN
static inline
#endif
void main_loop(void)
{
quat_t q;
use_window( window );
set_clean_color_context( 0x2E, 0x07, 0x3F );
q = poll_input(window);
load_rot_matrix(shader, q);
load_rot_matrix(shader_plain, q);
glewInit();
clean_context();
points = generate_surface(16);
if( !( shader = create_shader() ) )
goto error_shader;
gload_program( shader, vs, VERTEX );
gload_program( shader, fs, FRAGMENT );
use_shader( shader );
load_fix_matrix( shader, (float)WIDTH/HEIGHT );
if( !( m_cube = create_mesh( points ) ) )
goto error_mesh_cube;
free(points);
if( !( m_axis = create_mesh( d_axis ) ) )
goto error_mesh_axis;
texture=create_palette_texture( palette );
use_texture( texture );
while( is_open_window( window ) )
{
quat_t q;
q=poll_input( window );
load_rot_matrix( shader, q );
clean_context();
#ifndef DEBUG
load_mdl_matrix(shader_plain, 0, 0);
draw_mesh(m_axis);
load_mdl_matrix(shader_plain, 1, 1);
draw_mesh(m_axis);
load_mdl_matrix(shader_plain, 2, 2);
draw_mesh(m_axis);
load_mdl_matrix(shader, 0, 3);
#else
load_mdl_matrix(shader_plain, 0, 3);
load_mdl_matrix( shader, 0, 0 );
draw_mesh( m_axis );
load_mdl_matrix( shader, 1, 1 );
draw_mesh( m_axis );
load_mdl_matrix( shader, 2, 2 );
draw_mesh( m_axis );
#endif
draw_mesh(m_surface);
}
int main(void)
{
id_t texture;
load_mdl_matrix( shader, 0, 3 );
draw_mesh( m_cube );
mlog("[VENTANA] Inicializando...\n");
{
if (!(window = init_window(WIDTH, HEIGHT, wname)))
{
mlog("[VENTANA] Error al inicializar...\n");
goto error_window;
}
use_window(window);
}
mlog("[CONTEXT] Inicializando...\n");
{
if (!(init_context()))
{
mlog("[CONTEXT] Error al inicializar...\n");
goto error_context;
}
set_clean_color_context(0x2E, 0x07, 0x3F);
}
mlog("[TEXTURE] Inicializando...\n");
{
texture = create_palette_texture(palette, 4);
use_texture(texture);
}
mlog("[SHADER] Inicializando...\n");
{
if (!(shader = create_shader()))
{
mlog("[SHADER] Error al inicializar...\n");
goto error_shader;
}
load_program_to_shader(shader, vs, VERTEX);
load_program_to_shader(shader, fs, FRAGMENT);
load_fix_matrix(shader, (float)WIDTH / HEIGHT);
}
mlog("[SHADER] Inicializando...\n");
{
if (!(shader_plain = create_shader()))
{
mlog("[SHADER] Error al inicializar...\n");
goto error_shader_plain;
}
load_program_to_shader(shader_plain, vs, VERTEX);
load_program_to_shader(shader_plain, fs_plain, FRAGMENT);
load_fix_matrix(shader_plain, (float)WIDTH / HEIGHT);
}
mlog("[MESH] Inicializando...\n");
{
unsigned char m;
float *n_surface, *d_surface;
d_surface = generate_data_surface(16, &m);
n_surface = generate_normals_surface(d_surface, m);
projection.m = m;
if (!(m_surface = create_mesh(d_surface, n_surface, m)))
{
mlog("[MESH] Error al inicializar...\n");
goto error_mesh_surface;
}
projection.mesh = m_surface;
free(n_surface);
free(d_surface);
}
mlog("[MESH] Inicializando...\n");
{
if (!(m_axis = create_mesh(d_axis, NULL, 3)))
{
mlog("[MESH] Error al inicializar...\n");
goto error_mesh_axis;
}
}
mlog("[MAIN LOOP] Inicializando...\n");
#ifdef EMSCRIPTEN
emscripten_set_main_loop(&main_loop, 0, 1);
#else
while (is_open_window(window))
main_loop();
#endif
mlog("[MAIN LOOP] Terminando...\n");
mlog("[MESH] Destruyendo...\n");
destroy_mesh(m_axis);
mlog("[MESH] Destruyendo...\n");
destroy_mesh(m_surface);
mlog("[SHADER] Destruyendo...\n");
destroy_shader(shader_plain);
mlog("[SHADER] Destruyendo...\n");
destroy_shader(shader);
mlog("[TEXTURE] Destruyendo...\n");
destroy_texture(texture);
mlog("[WINDOW] Destruyendo...\n");
close_window(window);
destroy_texture( texture );
destroy_mesh( m_axis );
destroy_mesh( m_cube );
destroy_shader( shader );
close_window( window );
return 0;
mlog("[MESH] Destruyendo...\n");
destroy_mesh(m_axis);
error_mesh_axis:
mlog("[MESH] Destruyendo...\n");
destroy_mesh(m_surface);
error_mesh_surface:
mlog("[SHADER] Destruyendo...\n");
destroy_shader(shader_plain);
error_shader_plain:
mlog("[SHADER] Destruyendo...\n");
destroy_shader(shader);
destroy_mesh( m_cube );
error_mesh_cube:
destroy_shader( shader );
error_shader:
mlog("[TEXTURE] Destruyendo...\n");
destroy_texture(texture);
error_context:
mlog("[WINDOW] Destruyendo...\n");
close_window(window);
close_window( window );
error_window:
return 1;
}

View File

@@ -1,11 +1,5 @@
/*
If DEBUG is set, we show the triangles of the mesh,
without illumination, and we write the compilation
error of the shaders.
*/
/* #define DEBUG */
/* #define GLAD */
#include <GL/glew.h>
#include <GLFW/glfw3.h>
typedef const void * window_t;
typedef unsigned int id_t;
@@ -13,29 +7,14 @@ typedef void * mesh_t;
typedef float * quat_t;
typedef float * mat4_t;
/*
This struct represent the proyection, where:
mesh: data of surface.
m: the dimention of the surface.
x: the coordanate of the x axis.
y: the coordanate of the y axis.
z: the coordanate of the z axis.
w: the coordanate of the w axis.
*/
typedef float narray_float_t[];
typedef unsigned char narray_u8_t[];
struct projection
enum
{
mesh_t mesh;
unsigned char m, x, y, z, w;
VERTEX, FRAGMENT
};
/*
Init window:
w: default width;
h: default height;
name: Name of the window.
*/
window_t init_window(unsigned int w, unsigned int h, const char * name);
void use_window(window_t window);
@@ -44,92 +23,32 @@ int is_open_window(window_t window);
void close_window(window_t window);
/*
Create mesh:
d: array of floats with the vertex data.
n: array of floats with the normal data.
m: Dimention of mesh
*/
mesh_t create_mesh( float * d, float * n, unsigned char m );
void set_projection_mesh( struct projection );
mesh_t create_mesh( float * mesh);
void destroy_mesh(mesh_t p);
void draw_mesh(mesh_t p);
/*
Set background color:
r: red value in hex.
g: green value in hex.
b: blue value in hex.
*/
void set_clean_color_context(unsigned char r, unsigned char g, unsigned char b);
void set_clean_color_context(unsigned char, unsigned char, unsigned char);
void clean_context(void);
int init_context( void );
void destroy_shader(id_t shader);
id_t create_shader(void);
void use_shader(id_t shader);
void use_shader(id_t program);
enum
{
VERTEX, FRAGMENT
};
unsigned char gload_program(id_t program, const char * src, unsigned int type);
/*
Load program to shader:
src: GLSL source code as string.
type: VERTEX or FRAGMENT
*/
void gload_float(id_t program, char * var, float f);
unsigned char load_program_to_shader(id_t shader, const char * src, unsigned int type);
void gload_mat4(id_t program, char * var, mat4_t m);
/*
load float to shader:
var: name of glsl variable.
f: float to load
*/
void load_float_to_shader(id_t shader, char * var, float f);
/*
load matrix 4 to shader:
var: name of glsl variable.
m: Matrix to load
*/
void load_mat4_to_shader(id_t shader, char * var, mat4_t m);
/*
Generate and load fix matrix, this matrix
has the information of the perspective and
camera information.
ratio: default ratio of window.
*/
void load_fix_matrix(id_t shader, float ratio);
/*
Generate and load model matrix, it also sets the color
to draw.
i: From {0,1,2} select one of 3 ortogonal rotations,
One for each axis.
c: Color index of the pallete.
*/
void load_mdl_matrix(id_t shader, unsigned char i, unsigned char c);
/*
Generate and load rotation matrix.
q: quaterinon describing the rotation.
*/
void load_rot_matrix(id_t shader, quat_t q);
id_t config_texture(unsigned short type);
@@ -138,11 +57,6 @@ void use_texture(id_t texture);
void destroy_texture(id_t texture);
/*
Set color palette as texture:
colors: array of color values (rgba in hex ).
n: number of color on colors.
*/
id_t create_palette_texture(const unsigned char colors[][4], unsigned char n );
id_t create_palette_texture(const narray_u8_t colors);
quat_t poll_input(window_t window);

View File

@@ -1,50 +1,51 @@
#include "main.h"
#include <cglm/cam.h>
#include <cglm/mat4.h>
#include <cglm/cam.h>
#include <cglm/quat.h>
mat4 ortho[] = {
mat4 ortho[] =
{
{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
{ 1, 0, 0, 0 },
{ 0, 1, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 },
},
{
{0, 1, 0, 0},
{-1, 0, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
{ 0, 1, 0, 0 },
{ 1, 0, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 },
},
{
{0, 0, 1, 0},
{0, 1, 0, 0},
{-1, 0, 0, 0},
{0, 0, 0, 1},
{ 0, 0, 1, 0 },
{ 0, 1, 0, 0 },
{ 1, 0, 0, 0 },
{ 0, 0, 0, 1 },
},
};
void load_fix_matrix(id_t shader, float ratio)
void load_fix_matrix( id_t shader, float ratio )
{
mat4 m, n;
const int d = 7;
glm_lookat((vec3){0, 0, -d}, (vec3){0, 0, 0}, (vec3){0, 1, 0}, m);
glm_perspective(CGLM_PI / 4, ratio, d - 3, d + 3, n);
glm_mat4_mul(n, m, m);
glm_lookat( (vec3){0,0,-d}, (vec3){0,0,0}, (vec3){0,1,0}, m );
glm_perspective( CGLM_PI/4, ratio, d-3, d+3, n );
glm_mat4_mul( n, m, m );
load_mat4_to_shader(shader, "fix", (mat4_t)m);
gload_mat4( shader, "fix", (mat4_t) m );
}
void load_mdl_matrix(id_t shader, unsigned char i, unsigned char c)
void load_mdl_matrix( id_t shader, unsigned char i, unsigned char c )
{
load_float_to_shader(shader, "idx", c);
load_mat4_to_shader(shader, "mdl", (mat4_t)ortho[i]);
gload_float( shader, "idx", c );
gload_mat4( shader, "mdl", (mat4_t)ortho[i] );
}
void load_rot_matrix(id_t shader, quat_t q)
void load_rot_matrix( id_t shader, quat_t q )
{
mat4 m;
glm_quat_mat4(q, m);
load_mat4_to_shader(shader, "rot", (mat4_t)m);
glm_quat_mat4( q, m );
gload_mat4( shader, "rot", (mat4_t)m );
}

116
src/mesh.c Normal file → Executable file
View File

@@ -1,121 +1,55 @@
#include "main.h"
#ifdef GLAD
#include <glad.h>
#else
#include <GL/glew.h>
#endif
#include <stdio.h>
#include <stdlib.h>
struct obj
struct obj
{
unsigned int vertex, vao, n_vbo, d_vbo;
unsigned int vertex, vao, vbo;
};
void set_projection_mesh(struct projection projection)
mesh_t create_mesh( float * mesh )
{
struct obj *p;
p = projection.mesh;
struct obj * p;
glBindVertexArray(p->vao);
p=malloc(sizeof(struct obj));
glBindBuffer(GL_ARRAY_BUFFER, p->d_vbo);
glVertexAttribPointer(0, 1, GL_FLOAT, 0, projection.m * sizeof(float),
(float *)(projection.x * sizeof(float)));
glVertexAttribPointer(1, 1, GL_FLOAT, 0, projection.m * sizeof(float),
(float *)(projection.y * sizeof(float)));
glVertexAttribPointer(2, 1, GL_FLOAT, 0, projection.m * sizeof(float),
(float *)(projection.z * sizeof(float)));
glVertexAttribPointer(3, 1, GL_FLOAT, 0, projection.m * sizeof(float),
(float *)(projection.w * sizeof(float)));
p->vertex=(*mesh)/3;
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, p->n_vbo);
glVertexAttribPointer(4, 1, GL_FLOAT, 0, projection.m * sizeof(float),
(float *)(projection.x * sizeof(float)));
glVertexAttribPointer(5, 1, GL_FLOAT, 0, projection.m * sizeof(float),
(float *)(projection.y * sizeof(float)));
glVertexAttribPointer(6, 1, GL_FLOAT, 0, projection.m * sizeof(float),
(float *)(projection.z * sizeof(float)));
glVertexAttribPointer(7, 1, GL_FLOAT, 0, projection.m * sizeof(float),
(float *)(projection.w * sizeof(float)));
}
glGenVertexArrays( 1, &p->vao );
glGenBuffers( 1, &p->vbo );
/*
In this function we load all the vertex and ELEMENT_ARRAY datas on two
diferents buffers, so we can access the coordanates that we want
to display using the layout location in GLSL.
This trick can be done with glVertexAttribPointer.
*/
glBindVertexArray( p->vao );
glBindBuffer( GL_ARRAY_BUFFER, p->vbo );
glBufferData( GL_ARRAY_BUFFER, (p->vertex*3)*sizeof(float), mesh+1,
GL_STATIC_DRAW );
mesh_t create_mesh(float *d, float *n, unsigned char m)
{
unsigned char i;
struct obj *p;
p = malloc(sizeof(struct obj));
p->vertex = (*d) / m;
glGenVertexArrays(1, &p->vao);
glBindVertexArray(p->vao);
glGenBuffers(1, &p->d_vbo);
glBindBuffer(GL_ARRAY_BUFFER, p->d_vbo);
glBufferData(
GL_ARRAY_BUFFER, p->vertex * m * sizeof(float), d + 1, GL_STATIC_DRAW);
if (n)
{
glGenBuffers(1, &p->n_vbo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, p->n_vbo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, p->vertex * m * sizeof(float),
n + 1, GL_STATIC_DRAW);
}
for (i = 0; i < 4; ++i)
{
glEnableVertexAttribArray(i);
glEnableVertexAttribArray(i + 4);
}
{
struct projection projection = {
.x = 0,
.y = 1,
.z = 2,
.w = 3,
};
projection.m = m;
projection.mesh = p;
set_projection_mesh(projection);
}
glVertexAttribPointer( 0,3,GL_FLOAT, 0, 3*sizeof(float), NULL );
glEnableVertexAttribArray(0);
return p;
}
void destroy_mesh(mesh_t p)
void destroy_mesh( mesh_t p )
{
struct obj *obj;
struct obj * obj ;
obj = p;
glDeleteVertexArrays(1, &obj->vao);
glDeleteBuffers(1, &obj->d_vbo);
glDeleteBuffers(1, &obj->n_vbo);
free(p);
glDeleteVertexArrays( 1, &obj->vao );
glDeleteBuffers( 1, &obj->vbo );
free( p );
}
void draw_mesh(mesh_t p)
void draw_mesh( mesh_t p )
{
struct obj *obj = p;
struct obj * obj=p;
glBindVertexArray(obj->vao);
glBindVertexArray( obj->vao );
#ifdef DEBUG
{
int i;
for (i = 0; i < obj->vertex; i += 3)
glDrawArrays(GL_LINE_LOOP, i, 3);
for( i=0; i<obj->vertex;i+=3 )
glDrawArrays(GL_LINE_LOOP, i, 3 );
}
#else
glDrawArrays(GL_TRIANGLES, 0, obj->vertex);
glDrawArrays(GL_TRIANGLES, 0, obj->vertex );
#endif
}

View File

@@ -1,43 +1,51 @@
#include "main.h"
#ifdef GLAD
#include <glad.h>
#else
#include <GL/glew.h>
#endif
#ifdef DEBUG
#include <stdio.h>
#endif
void destroy_shader(unsigned int shader) { return glDeleteProgram(shader); }
void destroy_shader( unsigned int shader )
{
return glDeleteProgram( shader );
}
unsigned int create_shader(void) { return glCreateProgram(); }
unsigned int create_shader( void )
{
return glCreateProgram();
}
void use_shader(unsigned int program) { return glUseProgram(program); }
void use_shader( unsigned int program )
{
return glUseProgram( program );
}
unsigned char load_program_to_shader(
unsigned int program, const char *src, unsigned int i)
unsigned char gload_program( unsigned int program, const char * src,
unsigned int i )
{
int shader, status;
unsigned int type[] = {
[VERTEX] = GL_VERTEX_SHADER, [FRAGMENT] = GL_FRAGMENT_SHADER};
unsigned int type[] =
{
[VERTEX]=GL_VERTEX_SHADER,
[FRAGMENT]=GL_FRAGMENT_SHADER
};
if (!src)
if( !src )
return 0;
shader = glCreateShader(type[i]);
glShaderSource(shader, 1, (const GLchar **)&src, ((void *)0));
glShaderSource( shader, 1, (const GLchar **)&src, ((void*)0 ));
glCompileShader(shader);
glGetShaderiv( shader, GL_COMPILE_STATUS, &status );
glGetShaderiv(shader, GL_COMPILE_STATUS, &status);
if (!status)
if( !status )
{
#ifdef DEBUG
char log[256];
glGetShaderInfoLog(shader, 256, NULL, log);
printf("%s", log);
glGetShaderInfoLog( shader, 256, NULL, log );
printf( "%s", log );
#endif
return 0;
}
@@ -48,14 +56,14 @@ unsigned char load_program_to_shader(
return 1;
}
void load_float_to_shader(unsigned int program, char *var, float f)
void gload_float( unsigned int program, char * var, float f )
{
glUseProgram(program);
glUniform1f(glGetUniformLocation(program, var), f);
glUseProgram( program );
glUniform1f( glGetUniformLocation( program, var ), f );
}
void load_mat4_to_shader(unsigned int program, char *var, float *mat)
void gload_mat4( unsigned int program, char * var, float * mat )
{
glUseProgram(program);
glUniformMatrix4fv(glGetUniformLocation(program, var), 1, 0, mat);
glUseProgram( program );
glUniformMatrix4fv( glGetUniformLocation( program, var ), 1, 0, mat );
}

View File

@@ -1,234 +1,76 @@
#include <complex.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define CGLM_ALL_UNALIGNED
#include <cglm/vec3.h>
#include <cglm/vec4.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef CMPLX
#define CMPLX(a,b) (a+I*b)
#endif
typedef void(*function_t)(float*,int, int, int);
void riemman(float *d_surface, int * coords, int grid_size)
{
complex double eq;
float u = 2 * ((float)coords[0] / grid_size) - 1;
float v = 2 * ((float)coords[1] / grid_size) - 1;
eq = csqrt(CMPLX(u,v));
d_surface[0] = u;
d_surface[1] = v;
d_surface[2] = creal(eq);
d_surface[3] = cimag(eq);
}
void cube( float *d_surface, int * coord, int grid_size )
{
unsigned char i;
for(int i=0; i<4; i++ )
d_surface[i]=(float)coord[i]/grid_size;
}
void mobius(float *d_surface, int * coord, int grid_size)
void mobius(float *d_surface, int i, int j, int grid_size)
{
const float width = 0.5;
float u = (2 * M_PI) * ((float)coord[0] / grid_size);
float v = (2 * width) * ((float)coord[1] / grid_size) - width;
float u = (2*M_PI) * ((float)i/grid_size );
float v = (2*width) * ((float)j/grid_size ) - width;
d_surface[0] = cos(u) + v * cos(u / 2) * cos(u);
d_surface[1] = sin(u) + v * cos(u / 2) * sin(u);
d_surface[2] = v * sin(u / 2);
}
void torus(float *d_surface, int * coord, int grid_size)
void toro(float *d_surface, int i, int j, int grid_size)
{
float u = (2 * M_PI) * ((float)coord[0] / grid_size);
float v = (2 * M_PI) * ((float)coord[1] / grid_size);
float u = (2*M_PI) * ((float)i/grid_size );
float v = (2*M_PI) * ((float)j/grid_size );
d_surface[0] = (1 + 0.5 * cos(v)) * cos(u);
d_surface[1] = (1 + 0.5 * cos(v)) * sin(u);
d_surface[2] = 0.5 * sin(v);
d_surface[0] = (1 + 0.5*cos(v))*cos(u);
d_surface[1] = (1 + 0.5*cos(v))*sin(u);
d_surface[2] = 0.5*sin(v);
}
void klein(float *d_surface, int * coord, int grid_size)
void klein(float *d_surface, int i, int j, int grid_size)
{
float u = (2 * M_PI) * ((float)coord[0] / grid_size);
float v = (2 * M_PI) * ((float)coord[1]/ grid_size);
float u = (2*M_PI) * ((float)i/grid_size );
float v = (2*M_PI) * ((float)j/grid_size );
d_surface[0] = (0.5 * cos(v) + 0.5) * cos(u);
d_surface[1] = (0.5 * cos(v) + 0.5) * sin(u);
d_surface[2] = sin(v) * cos(u / 2);
d_surface[3] = sin(v) * sin(u / 2);
d_surface[0] = (0.5*cos(v) + 0.5) * cos(u);
d_surface[1] = (0.5*cos(v) + 0.5) * sin(u);
d_surface[2] = sin(v) * cos(u/2);
//d_surface[2] = sin(v)*sin(u/2);
}
typedef void (*function_t)(float *, int *, int);
float *generate_data_surface(int grid_size, unsigned char *s)
float * generate_surface(int grid_size)
{
unsigned int i, j, k, o, p, l, n, m;
long size, q=0;
function_t f;
float *d_surface;
long size = grid_size*grid_size*2*3*3;
function_t f = klein;
float * d_surface;
int k=0;
const int dim =2;
int cara[dim];
char bits[dim+1];
bits[dim]=0;
f =klein ;
*s = 4;
size = grid_size * grid_size * 6 * (*s) * 24;
d_surface = malloc((size + 1) * sizeof(float));
d_surface = malloc((size+1)*sizeof(float));
d_surface[0] = size;
for(o = 0; o < dim; o ++)
{
for (p = 0; p < o; p++)
for (int i = 0; i < grid_size; i++)
{
for (int j = 0; j < grid_size; j++)
{
for (k = 0; k < (1 << (dim-2)); k++)
{
unsigned char skip=0;
for(n = 0; n < dim-2; n++)
{
if( n==(o-1) || n==p )
skip++;
// Triángulo 1
f(&d_surface[k + 1], i, j, grid_size);
k+=3;
f(&d_surface[k + 1], i + 1, j, grid_size);
k+=3;
f(&d_surface[k + 1], i + 1, j + 1, grid_size);
k+=3;
cara[n+skip] = (k & (1<<n))?grid_size:0;
}
for(i = 0; i < grid_size; i++)
{
for (j = 0; j < grid_size; j++)
{
cara[o] = i;
cara[p] = j;
f(&d_surface[q + 1], cara, grid_size);
q += *s;
cara[o] = i + 1;
cara[p] = j;
f(&d_surface[q + 1], cara, grid_size);
q += *s;
cara[o] = i + 1;
cara [p] = j + 1;
f(&d_surface[q + 1], cara, grid_size);
q += *s;
cara[o] = i;
cara [p] = j;
f(&d_surface[q + 1], cara, grid_size);
q += *s;
cara[o] = i;
cara [p] = j + 1;
f(&d_surface[q + 1], cara, grid_size);
q += *s;
cara[o] = i + 1;
cara [p] = j + 1;
f(&d_surface[q + 1], cara, grid_size);
q += *s;
}
}
}
// Triángulo 2
f(&d_surface[k + 1], i, j, grid_size);
k+=3;
f(&d_surface[k + 1], i, j + 1, grid_size);
k+=3;
f(&d_surface[k + 1], i + 1, j + 1, grid_size);
k+=3;
}
}
return d_surface;
}
static void __calculate_normal(
float *p1, float *p2, float *p3, float *normal, unsigned char n)
{
float alpha;
vec4 v1, v2, v3;
vec4 u1, u2, u3;
switch (n)
{
case 3:
glm_vec3_sub(p2, p1, v1);
glm_vec3_sub(p3, p1, v2);
glm_vec3_cross(v1, v2, normal);
glm_vec3_normalize(normal);
return;
case 4:
/*
In Grant-Shmidth we need 3 linearly independian vector that forms a
basis, so we can have a ortonormal version of that basis, since, we
must have v1 = p3 - p1 v2 = p2 - p1 Then v3 = p1, will most certantly
be linerly independiant to v1 and v2.
*/
glm_vec4_sub(p2, p1, v1);
glm_vec4_sub(p3, p1, v2);
glm_vec4_copy(p1, v3);
/* Setup U1 */
{
glm_vec4_copy(v1, u1);
}
/* Setup U2 */
{
vec4 proj;
alpha = glm_vec4_dot(v2, u1) / glm_vec4_dot(u1, u1);
glm_vec4_scale(u1, alpha, proj);
glm_vec4_sub(v2, proj, u2);
}
/* Setup U3 */
{
vec4 proj1, proj2;
alpha = glm_vec4_dot(v3, u1) / glm_vec4_dot(u1, u1);
glm_vec4_scale(u1, alpha, proj1);
alpha = glm_vec4_dot(v3, u2) / glm_vec4_dot(u2, u2);
glm_vec4_scale(u2, alpha, proj2);
glm_vec4_sub(v3, proj1, u3);
glm_vec4_sub(u3, proj2, u3);
}
glm_vec4_copy(u3, normal);
glm_vec4_normalize(normal);
return;
}
}
float *generate_normals_surface(float *d, unsigned char m)
{
float *n;
n = malloc((*d + 1) * sizeof(float));
*n = *d;
for (int i = 0; i < *d; i += 3 * m)
{
vec4 norm_vec;
__calculate_normal(
(d + 1) + i, (d + 1) + i + m, (d + 1) + i + 2 * m, norm_vec, m);
glm_vec3_copy(norm_vec, (n + 1) + i);
glm_vec3_copy(norm_vec, (n + 1) + i + m);
glm_vec3_copy(norm_vec, (n + 1) + i + 2 * m);
}
return n;
}

View File

@@ -1,38 +1,37 @@
#include "main.h"
#ifdef GLAD
#include <glad.h>
#else
#include <GL/glew.h>
#endif
#define TYPE GL_TEXTURE_2D_ARRAY
static id_t __config_texture(unsigned short type)
id_t config_texture( unsigned short type )
{
id_t texture;
glGenTextures(1, &texture);
glBindTexture(TYPE, texture);
glGenTextures( 1, &texture );
glBindTexture( TYPE, texture );
{
glTexParameteri(TYPE, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(TYPE, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri( TYPE, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
glTexParameteri( TYPE, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
}
return texture;
}
void use_texture(id_t texture) { return glBindTexture(TYPE, texture); }
void destroy_texture(unsigned int texture)
void use_texture( id_t texture )
{
return glDeleteTextures(1, &texture);
return glBindTexture( TYPE, texture );
}
id_t create_palette_texture(const unsigned char colors[][4], unsigned char n)
void destroy_texture( unsigned int texture )
{
id_t texture = __config_texture(TYPE);
glTexImage3D(
TYPE, 0, GL_RGBA, 1, 1, n, 0, GL_RGBA, GL_UNSIGNED_BYTE, colors);
return glDeleteTextures( 1, &texture );
}
id_t create_palette_texture( const unsigned char * colors )
{
id_t texture = config_texture( TYPE );
glTexImage3D( TYPE, 0, GL_RGBA,
1, 1, (*colors)/4, 0, GL_RGBA, GL_UNSIGNED_BYTE, colors+1);
return texture;
}

View File

@@ -1,88 +1,55 @@
#include "main.h"
#include <GLFW/glfw3.h>
#include <stdio.h>
#include <time.h>
void __window_callback_input(GLFWwindow *, int, int);
void __mouse_callback_input(GLFWwindow *, int, int, int);
void __scroll_callback_input(GLFWwindow *, double, double);
void __key_callback_input(GLFWwindow *, int, int, int, int);
void __window_callback(GLFWwindow *, int, int);
void __mouse_callback(GLFWwindow *, int, int, int);
void __scroll_callback(GLFWwindow *, double, double);
window_t init_window(unsigned int w, unsigned int h, const char *name);
/*
Limitamos los FPS, contando el tiempo en el que
se ejecuta el main loop, y esperando el tiempo restante
para lograr los fps deseados.
*/
static void __limit_fps_window(int max_fps)
window_t init_window(unsigned int w, unsigned int h, const char * name)
{
static double previous_time = 0.0;
double current_time;
double frame_time;
double elapsed_time;
void * window;
void __mouse_callback(GLFWwindow *window, int button, int action, int mods);
void __scroll_callback(GLFWwindow *window, double xoffset, double yoffset);
current_time = glfwGetTime();
frame_time = 1.0 / max_fps;
elapsed_time = current_time - previous_time;
if (elapsed_time < frame_time)
{
struct timespec sleep_time;
sleep_time.tv_sec = 0;
sleep_time.tv_nsec = (long)((frame_time - elapsed_time) * 1e9);
nanosleep(&sleep_time, NULL);
current_time = glfwGetTime();
}
previous_time = current_time;
}
window_t init_window(unsigned int width, unsigned int height, const char *title)
{
window_t window;
if (!glfwInit())
if( !glfwInit() )
return NULL;
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
window = (window_t)glfwCreateWindow(width, height, title, NULL, NULL);
if (!(window))
window = glfwCreateWindow(w, h, name, NULL, NULL);
if( !window )
{
glfwTerminate();
return NULL;
}
glfwMakeContextCurrent((GLFWwindow *)(window));
glfwSetWindowSizeCallback(window, __window_callback);
glfwSetMouseButtonCallback((GLFWwindow*)window, __mouse_callback);
glfwSetScrollCallback((GLFWwindow*)window, __scroll_callback);
glfwSetWindowSizeCallback((GLFWwindow *)window, __window_callback_input);
glfwSetMouseButtonCallback((GLFWwindow *)window, __mouse_callback_input);
glfwSetScrollCallback((GLFWwindow *)window, __scroll_callback_input);
glfwSetKeyCallback((GLFWwindow *)window, __key_callback_input);
__window_callback_input((GLFWwindow *)window, width, height);
__window_callback( window, w, h );
return window;
}
void use_window(window_t window) { glfwMakeContextCurrent((void *)window); }
void use_window(window_t window)
{
glfwMakeContextCurrent((void*)window);
}
int is_open_window(window_t window)
{
glfwSwapBuffers((void *)window);
glfwSwapBuffers((void*)window);
glfwPollEvents();
__limit_fps_window(60);
return !glfwWindowShouldClose((void *)window);
return !glfwWindowShouldClose((void*)window);
}
void close_window(window_t window)
{
glfwDestroyWindow((GLFWwindow *)window);
glfwDestroyWindow((void*)window);
glfwTerminate();
}